主页 > 大数据 > 数据库名词解释?

数据库名词解释?

一、数据库名词解释?

数据库的概念:

数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,

数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。

在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。数据库技术是管理信息系统、办公自动化系统、决策支持系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。

数据库的定义:

定义1:数据库(Database)是按照数据结构来组织、存储和管理数据的建立在计算机存储设备上的仓库。

简单来说是本身可视为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等操作。

在经济管理的日常工作中,常常需要把某些相关的数据放进这样的“仓库”,并根据管理的需要进行相应的处理。

例如,企业或事业单位的人事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。有了这个"数据仓库"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工人数等等。这些工作如果都能在计算机上自动进行,那我们的人事管理就可以达到极高的水平。此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种"数据库",使其可以利用计算机实现财务、仓库、生产的自动化管理。

定义2:

严格来说,数据库是长期储存在计算机内、有组织的、可共享的数据集合。数据库中的数据指的是以一定的数据模型组织、描述和储存在一起、具有尽可能小的冗余度、较高的数据独立性和易扩展性的特点并可在一定范围内为多个用户共享。

这种数据集合具有如下特点:尽可能不重复,以最优方式为某个特定组织的多种应用服务,其数据结构独立于使用它的应用程序,对数据的增、删、改、查由统一软件进行管理和控制。从发展的历史看,数据库是数据管理的高级阶段,它是由文件管理系统发展起来的。[1] [2]

数据库的处理系统:

数据库是一个单位或是一个应用领域的通用数据处理系统,它存储的是属于企业和事业部门、团体和个人的有关数据的集合。数据库中的数据是从全局观点出发建立的,按一定的数据模型进行组织、描述和存储。其结构基于数据间的自然联系,从而可提供一切必要的存取路径,且数据不再针对某一应用,而是面向全组织,具有整体的结构化特征。

数据库中的数据是为众多用户所共享其信息而建立的,已经摆脱了具体程序的限制和制约。不同的用户可以按各自的用法使用数据库中的数据;多个用户可以同时共享数据库中的数据资源,即不同的用户可以同时存取数据库中的同一个数据。数据共享性不仅满足了各用户对信息内容的要求,同时也满足了各用户之间信息通信的要求。

数据库的基本结构:

数据库的基本结构分三个层次,反映了观察数据库的三种不同角度。

以内模式为框架所组成的数据库叫做物理数据库;以概念模式为框架所组成的数据叫概念数据库;以外模式为框架所组成的数据库叫用户数据库。

⑴ 物理数据层。

它是数据库的最内层,是物理存贮设备上实际存储的数据的集合。这些数据是原始数据,是用户加工的对象,由内部模式描述的指令操作处理的位串、字符和字组成。

⑵ 概念数据层。

它是数据库的中间一层,是数据库的整体逻辑表示。指出了每个数据的逻辑定义及数据间的逻辑联系,是存贮记录的集合。它所涉及的是数据库所有对象的逻辑关系,而不是它们的物理情况,是数据库管理员概念下的数据库。

⑶ 用户数据层。

它是用户所看到和使用的数据库,表示了一个或一些特定用户使用的数据集合,即逻辑记录的集合。

数据库不同层次之间的联系是通过映射进行转换的。

数据库的主要特点:

⑴ 实现数据共享

数据共享包含所有用户可同时存取数据库中的数据,也包括用户可以用各种方式通过接口使用数据库,并提供数据共享。

⑵ 减少数据的冗余度

同文件系统相比,由于数据库实现了数据共享,从而避免了用户各自建立应用文件。减少了大量重复数据,减少了数据冗余,维护了数据的一致性。

⑶ 数据的独立性

数据的独立性包括逻辑独立性(数据库中数据库的逻辑结构和应用程序相互独立)和物理独立性(数据物理结构的变化不影响数据的逻辑结构)。

⑷ 数据实现集中控制

文件管理方式中,数据处于一种分散的状态,不同的用户或同一用户在不同处理中其文件之间毫无关系。利用数据库可对数据进行集中控制和管理,并通过数据模型表示各种数据的组织以及数据间的联系。

⑸数据一致性和可维护性,以确保数据的安全性和可靠性

主要包括:①安全性控制:以防止数据丢失、错误更新和越权使用;②完整性控制:保证数据的正确性、有效性和相容性;③并发控制:使在同一时间周期内,允许对数据实现多路存取,又能防止用户之间的不正常交互作用。

⑹ 故障恢复

由数据库管理系统提供一套方法,可及时发现故障和修复故障,从而防止数据被破坏。数据库系统能尽快恢复数据库系统运行时出现的故障,可能是物理上或是逻辑上的错误。比如对系统的误操作造成的数据错误等。

数据库的数据种类:

数据库通常分为层次式数据库、网络式数据库和关系式数据库三种。而不同的数据库是按不同的数据结构来联系和组织的。

1.数据结构模型

⑴数据结构

所谓数据结构是指数据的组织形式或数据之间的联系。

如果用D表示数据,用R表示数据对象之间存在的关系集合,则将DS=(D,R)称为数据结构。

例如,设有一个电话号码簿,它记录了n个人的名字和相应的电话号码。为了方便地查找某人的电话号码,将人名和号码按字典顺序排列,并在名字的后面跟随着对应的电话号码。这样,若要查找某人的电话号码(假定他的名字的第一个字母是Y),那么只须查找以Y开头的那些名字就可以了。该例中,数据的集合D就是人名和电话号码,它们之间的联系R就是按字典顺序的排列,其相应的数据结构就是DS=(D,R),即一个数组。

⑵数据结构类型

数据结构又分为数据的逻辑结构和数据的物理结构。

数据的逻辑结构是从逻辑的角度(即数据间的联系和组织方式)来观察数据,分析数据,与数据的存储位置无关;数据的物理结构是指数据在计算机中存放的结构,即数据的逻辑结构在计算机中的实现形式,所以物理结构也被称为存储结构。

这里只研究数据的逻辑结构,并将反映和实现数据联系的方法称为数据模型。

比较流行的数据模型有三种,即按图论理论建立的层次结构模型和网状结构模型以及按关系理论建立的关系结构模型。

2.层次、网状和关系数据库系统

⑴层次结构模型

层次结构模型实质上是一种有根结点的定向有序树(在数学中"树"被定义为一个无回的连通图)。下图是一个高等学校的组织结构图。这个组织结构图像一棵树,校部就是树根(称为根结点),各系、专业、教师、学生等为枝点(称为结点),树根与枝点之间的联系称为边,树根与边之比为1:N,即树根只有一个,树枝有N个。

按照层次模型建立的数据库系统称为层次模型数据库系统。IMS(Information Management System)是其典型代表。

⑵网状结构模型

按照网状数据结构建立的数据库系统称为网状数据库系统,其典型代表是DBTG(Database Task Group)。用数学方法可将网状数据结构转化为层次数据结构。

⑶ 关系结构模型

关系式数据结构把一些复杂的数据结构归结为简单的二元关系(即二维表格形式)。例如某单位的职工关系就是一个二元关系。

由关系数据结构组成的数据库系统被称为关系数据库系统。

在关系数据库中,对数据的操作几乎全部建立在一个或多个关系表格上,通过对这些关系表格的分类、合并、连接或选取等运算来实现数据的管理。

dBASEⅡ就是这类数据库管理系统的典型代表。对于一个实际的应用问题(如人事管理问题),有时需要多个关系才能实现。用dBASEⅡ建立起来的一个关系称为一个数据库(或称数据库文件),而把对应多个关系建立起来的多个数据库称为数据库系统。dBASEⅡ的另一个重要功能是通过建立命令文件来实现对数据库的使用和管理,对于一个数据库系统相应的命令序列文件,称为该数据库的应用系统。

因此,可以概括地说,一个关系称为一个数据库,若干个数据库可以构成一个数据库系统。数据库系统可以派生出各种不同类型的辅助文件和建立它的应用系统。

数据库的发展简史:

1 数据库的技术发展

使用计算机后,随着数据处理量的增长,产生了数据管理技术。数据管理技术的发展与计算机硬件(主要是外部存储器)系统软件及计算机应用的范围有着密切的联系。数据管理技术的发展经历了以下四个阶段:人工管理阶段、文件系统阶段、数据库阶段和高级数据库技术阶段 。

2 数据管理的诞生

数据库的历史可以追溯到五十年前,那时的数据管理非常简单。通过大量的分类、比较和表格绘制的机器运行数百万穿孔卡片来进行数据的处理,其运行结果在纸上打印出来或者制成新的穿孔卡片。而数据管理就是对所有这些穿孔卡片进行物理的储存和处理。然而,1950 年雷明顿兰德公司(Remington Rand Inc)的一种叫做Univac I 的计算机推出了一种一秒钟可以输入数百条记录的磁带驱动器,从而引发了数据管理的革命。1956 年IBM生产出第一个磁盘驱动器—— the Model 305 RAMAC。此驱动器有50 个盘片,每个盘片直径是2 英尺,可以储存5MB的数据。使用磁盘最大的好处是可以随机存取数据,而穿孔卡片和磁带只能顺序存取数据。

1951: Univac系统使用磁带和穿孔卡片作为数据存储。

数据库系统的萌芽出现于二十世纪60 年代。当时计算机开始广泛地应用于数据管理,对数据的共享提出了越来越高的要求。传统的文件系统已经不能满足人们的需要,能够统一管理和共享数据的数据库管理系统(DBMS)应运而生。数据模型是数据库系统的核心和基础,各种DBMS软件都是基于某种数据模型的。所以通常也按照数据模型的特点将传统数据库系统分成网状数据库、层次数据库和关系数据库三类。

最早出现的网状DBMS,是美国通用电气公司Bachman等人在1961年开发的IDS(Integrated Data Store)。1964年通用电气公司(General ElectricCo.)的Charles Bachman 成功地开发出世界上第一个网状DBMS也即第一个数据库管理系统——集成数据存储(Integrated Data Store IDS),奠定了网状数据库的基础,并在当时得到了广泛的发行和应用。IDS 具有数据模式和日志的特征,但它只能在GE主机上运行,并且数据库只有一个文件,数据库所有的表必须通过手工编码生成。之后,通用电气公司一个客户——BF Goodrich Chemical 公司最终不得不重写了整个系统,并将重写后的系统命名为集成数据管理系统(IDMS)。

网状数据库模型对于层次和非层次结构的事物都能比较自然的模拟,在关系数据库出现之前网状DBMS要比层次DBMS用得普遍。在数据库发展史上,网状数据库占有重要地位。

层次型DBMS是紧随网络型数据库而出现的,最著名最典型的层次数据库系统是IBM 公司在1968 年开发的IMS(Information Management System),一种适合其主机的层次数据库。这是IBM公司研制的最早的大型数据库系统程序产品。从60年代末产生起,如今已经发展到IMSV6,提供群集、N路数据共享、消息队列共享等先进特性的支持。这个具有30年历史的数据库产品在如今的WWW应用连接、商务智能应用中扮演着新的角色。

1973年Cullinane公司(也就是后来的Cullinet软件公司),开始出售Goodrich公司的IDMS改进版本,并且逐渐成为当时世界上最大的软件公司。

数据库的关系由来:

网状数据库和层次数据库已经很好地解决了数据的集中和共享问题,但是在数据独立性和抽象级别上仍有很大欠缺。用户在对这两种数据库进行存取时,仍然需要明确数据的存储结构,指出存取路径。而后来出现的关系数据库较好地解决了这些问题。

1970年,IBM的研究员E.F.Codd博士在刊物《Communication of the ACM》上发表了一篇名为“A Relational Model of Data for Large Shared Data Banks”的论文,提出了关系模型的概念,奠定了关系模型的理论基础。尽管之前在1968年Childs已经提出了面向集合的模型,然而这篇论文被普遍认为是数据库系统历史上具有划时代意义的里程碑。Codd的心愿是为数据库建立一个优美的数据模型。后来Codd又陆续发表多篇文章,论述了范式理论和衡量关系系统的12条标准,用数学理论奠定了关系数据库的基础。关系模型有严格的数学基础,抽象级别比较高,而且简单清晰,便于理解和使用。但是当时也有人认为关系模型是理想化的数据模型,用来实现DBMS是不现实的,尤其担心关系数据库的性能难以接受,更有人视其为当时正在进行中的网状数据库规范化工作的严重威胁。为了促进对问题的理解,1974年ACM牵头组织了一次研讨会,会上开展了一场分别以Codd和Bachman为首的支持和反对关系数据库两派之间的辩论。这次著名的辩论推动了关系数据库的发展,使其最终成为现代数据库产品的主流。

1969年Edgar F.“Ted” Codd发明了关系数据库。

1970年关系模型建立之后,IBM公司在San Jose实验室增加了更多的研究人员研究这个项目,这个项目就是著名的System R。其目标是论证一个全功能关系DBMS的可行性。该项目结束于1979年,完成了第一个实现SQL的 DBMS。然而IBM对IMS的承诺阻止了System R的投产,一直到1980年System R才作为一个产品正式推向市场。IBM产品化步伐缓慢的三个原因:IBM重视信誉,重视质量,尽量减少故障;IBM是个大公司,官僚体系庞大,IBM内部已经有层次数据库产品,相关人员不积极,甚至反对。

然而同时,1973年加州大学伯克利分校的Michael Stonebraker和Eugene Wong利用System R已发布的信息开始开发自己的关系数据库系统Ingres。他们开发的Ingres项目最后由Oracle公司、Ingres公司以及硅谷的其他厂商所商品化。后来,System R和Ingres系统双双获得ACM的1988年“软件系统奖”。

1976年霍尼韦尔公司(Honeywell)开发了第一个商用关系数据库系统——Multics Relational Data Store。关系型数据库系统以关系代数为坚实的理论基础,经过几十年的发展和实际应用,技术越来越成熟和完善。其代表产品有Oracle、IBM公司的 DB2、微软公司的MS SQL Server以及Informix、ADABAS D等等。

数据库的发展阶段:

数据库发展阶段大致划分为如下的几个阶段:人工管理阶段、文件系统阶段、数据库系统阶段、高级数据库阶段。

人工管理阶段

20世纪50年代中期之前,计算机的软硬件均不完善。硬件存储设备只有磁带、卡片和纸带,软件方面还没有操作系统,当时的计算机主要用于科学计算。这个阶段由于还没有软件系统对数据进行管理,程序员在程序中不仅要规定数据的逻辑结构,还要设计其物理结构,包括存储结构、存取方法、输入输出方式等。当数据的物理组织或存储设备改变时,用户程序就必须重新编制。由于数据的组织面向应用,不同的计算程序之间不能共享数据,使得不同的应用之间存在大量的重复数据,很难维护应用程序之间数据的一致性。

这一阶段的主要特征可归纳为如下几点:

(1)计算机中没有支持数据管理的软件,计算机系统不提供对用户数据的管理功能,应用程序只包含自己要用到的全部数据。用户编制程序,必须全面考虑好相关的数据,包括数据的定义、存储结构以即存取方法等。程序和数据是一个不可分割的整体。数据脱离了程序极具无任何存在的价值,数据无独立性。

(2)数据不能共享。不同的程序均有各自的数据,这些数据对不同的程序通常是不相同的,不可共享;即使不同的程序使用了相同的一组数据,这些数据也不能共享,程序中仍然需要各自加入这组数据,哪个部分都不能省略。基于这种数据的不可共享性,必然导致程序与程序之间存在大量的重复数据,浪费存储空间。

(3)不能单独保存数据。在程序中要规定数据的逻辑结构和物理结构,数据与程序不独立。基于数据与程序是一个整体,数据只为本程序所使用,数据只有与相应的程序一起保存才有价值,否则毫无用处。所以,所有程序的数据不单独保存。数据处理的方式是批处理。

文件系统阶段:

这一阶段的主要标志是计算机中有了专门管理数据库的软件——操作系统(文件管理)。

上世纪50年代中期到60年代中期,由于计算机大容量直接存储设备如硬盘、磁鼓的出现,

推动了软件技术的发展,软件的领域出现了操作系统和高级软件,操作系统中的文件系统是专门管理外存的数据管理软件,操作系统为用户使用文件提供了友好界面。操作系统的出现标志着数据管理步入一个新的阶段。在文件系统阶段,数据以文件为单位存储在外存,且由操作系统统一管理,文件是操作系统管理的重要资源。

文件系统阶段的数据管理具有一下几个特点:

优点

(1)数据以“文件”形式可长期保存在外部存储器的磁盘上。由于计算机的应用转向信息管理,因此对文件要进行大量的查询、修改和插入等操作。

(2)数据的逻辑结构与物理结构有了区别,程序和数据分离,使数据与程序有了一定的独立性,但比较简单。数据的逻辑结构是指呈现在用户面前的数据结构形式。数据的物理结构是指数据在计算机存储设备上的实际存储结构。程度与数据之间具有“设备独立性”,即程序只需用文件名就可与数据打交道,不必关心数据的物理位置。由操作系统的文件系统提供存取方法(读/写)。

(3)文件组织已多样化。有索引文件、链接文件和直接存取文件等。但文件之间相互独立、缺乏联系。数据之间的联系需要通过程序去构造。

(4)数据不再属于某个特定的程序,可以重复使用,即数据面向应用。但是文件结构的设计仍是基于特定的用途,程序基于特定的物理结构和存取方法,因此程度与数据结构之间的依赖关系并未根本改变。

(5)用户的程序与数据可分别存放在外存储器上,各个应用程序可以共享一组数据,实现了以文件为单位的数据共享文件系统。

(6)对数据的操作以记录为单位。这是由于文件中只存储数据,不存储文件记录的结构描述信息。文件的建立、存取、查询、插入、删除、修改等操作,都要用程序来实现。

(7)数据处理方式有批处理,也有联机实时处理。

缺点

文件系统对计算机数据管理能力的提高虽然起了很大的作用,但随着数据管理规模的扩大,数据量急剧增加,文价系统显露出一些缺陷,问题表现在:

(1)数据文件是为了满足特定业务领域某一部门的专门需要而设计,数据和程序相互依赖,数据缺乏足够的独立性。

(2)数据没有集中管理的机制,其安全性和完整性无法保障,数据维护业务仍然由应用程序来承担;

(3)数据的组织仍然是面向程序,数据与程序的依赖性强,数据的逻辑结构不能方便地修改和扩充,数据逻辑结构的每一点微小改变都会影响到应用程序;而且文件之间的缺乏联系,因而它们不能反映现实世界中事物之间的联系,加上操作系统不负责维护文件之间的联系,信息造成每个应用程序都有相对应的文件。如果文件之间有内容上的联系,那也只能由应用程序去处理,有可能同样的数据在多个文件中重复储存。这两者造成了大量的数据冗余。

(4)对现有数据文件不易扩充,不易移植,难以通过增、删数据项来适应新的应用要求。

数据库系统阶段:

20世纪60年代后期,随着计算机在数据管理领域的普遍应用,人们对数据管理技术提出了更高的要求:希望面向企业或部门,以数据为中心组织数据,减少数据的冗余,提供更高的数据共享能力,同时要求程序和数据具有较高的独立性,当数据的逻辑结构改变时,不涉及数据的物理结构,也不影响应用程序,以降低应用程序研制与维护的费用。数据库技术正是在这样一个应用需求的基础上发展起来的。

概括起来,数据库系统阶段的数据管理具有以下几个特点:

(1)采用数据模型表示复杂的数据结构。数据模型不仅描述数据本身的特征,还要描述数据之间的联系,这种联系通过所有存取路径。通过所有存储路径表示自然的数据联系是数据库与传统文件的根本区别。这样,数据不再面向特定的某个或多个应用,而是面对整个应用系统。如面向企业或部门,以数据为中心组织数据,形成综合性的数据库,为各应用共享。

(2)由于面对整个应用系统使得,数据冗余小,易修改、易扩充,实现了数据贡献。不同的应用程序根据处理要求,从数据库中获取需要的数据,这样就减少了数据的重复存储,也便于增加新的数据结构,便于维护数据的一致性。

(3)对数据进行统一管理和控制,提供了数据的安全性、完整性、以及并发控制。

(4)程序和数据有较高的独立性。数据的逻辑结构与物理结构之间的差别可以很大,用户以简单的逻辑结构操作数据而无须考虑数据的物理结构。

(5)具有良好的用户接口,用户可方便地开发和使用数据库。

从文件系统发展到数据库系统,这在信息领域中具有里程碑的意义。在文件系统阶段,人们在信息处理中关注的中心问题是系统功能的设计,因此程序设计占主导地位;而在数据库方式下,数据开始占据了中心位置,数据的结构设计成为信息系统首先关心的问题,而应用程序则以既定的数据结构为基础进行设计。

数据库发展趋势:

随着信息管理内容的不断扩展,出现了丰富多样的数据模型(层次模型,网状模型,关系模型,面向对象模型,半结构化模型等),新技术也层出不穷(数据流,Web数据管理,数据挖掘等)。每隔几年,国际上一些资深的数据库专家就会聚集一堂,探讨数据库研究现状,存在的问题和未来需要关注的新技术焦点。过去已有的几个类似报告包括:1989年Future Directions inDBMS Research-The Laguna BeachParticipants ;1990年DatabaseSystems : Achievements and Opportunities ;1991年W.H. Inmon 发表的《构建数据仓库》;1995年Database。

常见数据库厂商:

1. SQL Server

只能在windows上运行,没有丝毫的开放性,操作系统的系统的稳定对数据库是十分重要的。Windows9X系列产品是偏重于桌面应用,NT server只适合中小型企业。而且windows平台的可靠性,安全性和伸缩性是非常有限的。它不象unix那样久经考验,尤其是在处理大数据库。

2. Oracle

能在所有主流平台上运行(包括 windows)。完全支持所有的工业标准。采用完全开放策略。可以使客户选择最适合的解决方案。对开发商全力支持。

3. Sybase ASE

能在所有主流平台上运行(包括 windows)。 但由于早期Sybase与OS集成度不高,因此VERSION11.9.2以下版本需要较多OS和DB级补丁。在多平台的混合环境中,会有一定问题。

4. DB2

能在所有主流平台上运行(包括windows)。最适于海量数据。DB2在企业级的应用最为广泛,在全球的500家最大的企业中,几乎85%以上用DB2数据库服务器,而国内到97年约占5%。

二、通俗解释 数据库检索?

数据库说白了,就是存储数据的仓库,所有的数据都可以往里面存,图片、音乐、视频、文本等,它应用于我们生活的各个领域,最常见的,我们的手机里面,电话 本,短信,都是存在一个库里面,平时使用的QQ聊天工具,所有的好友,聊天记录都是存在库中的,这也就是所谓的数据库,我们使用的操作系统,也是一个文件 库,现在的网游、网站、软件、办系统,都离不开数据库的支撑,只不过通过特殊的设置和安排,让不同身份的操作者,执行对数据库不同的操作权限,你提问题, 是向数据库里面写一条记录,同时显示到前端Web界面,我来回答也是对应您的问题也同时往数据库中写一个答案,数据库就是如此神奇

三、SNP数据库名词解释?

SNP(Single Nucleotide Polymorphism)是指单核苷酸多态性,是基因组中最常见的形式的遗传变异。SNP 是 DNA 序列上的点突变,指的是在基因组中单个核苷酸的位置发生了变异,从而导致了不同个体之间的遗传差异。

SNP 数据库是指收集、存储和管理大量 SNP 数据的数据库。这些数据库通常包含了来自不同物种(如人类、动物、植物等)的 SNP 数据,用于研究遗传变异、基因关联性研究、群体遗传学和个体差异等领域的研究。

SNP 数据库通常提供以下信息:

1. SNP 位置:标识 SNP 在基因组中的位置,通常使用染色体号和具体的核苷酸位置来表示。

2. 突变类型:指示 SNP 的具体突变类型,如单碱基转换(A→G、C→T)或单碱基插入/缺失等。

3. 等位基因:描述 SNP 变异的两个等位基因,通常用字母表示,如 A 和 G 表示两个等位基因。

4. 遗传频率:指示不同等位基因在特定人群或物种中的出现频率,反映了该 SNP 的遗传变异程度。

5. 相关研究:提供与 SNP 相关的研究文献、遗传关联分析结果等信息,帮助研究人员深入了解 SNP 的功能和相关性。

常见的 SNP 数据库包括:

- dbSNP(The Single Nucleotide Polymorphism database):由美国国家生物技术信息中心(NCBI)维护的全球性 SNP 数据库。

- HapMap(International HapMap Project):旨在建立人类基因组中常见遗传变异的高分辨率图谱的国际性合作项目。

- 1000 Genomes Project:对全球不同人种的基因组进行测序,提供了大量的 SNP 数据。

- gnomAD(The Genome Aggregation Database):整合了大规模基因组测序项目的数据,包括各种人类和非人类物种。

通过 SNP 数据库,研究人员可以探索基因组中的遗传变异,并研究其与疾病风险、药物反应、基因表达等方面的关联。

四、数据库视图的通俗解释?

数据库视图是一种虚拟的表格,它将数据库中的一个或多个表格重新组合、筛选和转换成一个新的表格。这个新的表格可以像普通表格一样进行查询、更新、插入和删除等操作。

实际上,数据库视图并不存储任何数据,它只是针对已经存在的表格进行逻辑上的封装。通过使用视图,我们可以方便地访问和操作数据库中的数据,而不需要直接操作底层的数据表格,这样可以提高数据的安全性和可维护性。

视图可以根据需要对表格进行筛选和排序,并且可以将多个表格连接起来形成一个更加复杂的表格。此外,视图也可以隐藏敏感数据,只显示用户需要的信息。总之,数据库视图是一个非常有用的工具,它可以帮助我们更好地管理和利用数据库中的数据。

五、数据库管理系统 名词解释

数据库管理系统 名词解释

数据库管理系统(Database Management System,简称DBMS)指的是一种用于管理数据库的计算机软件系统。它能够存储、检索、管理和更新数据,同时提供了对数据的安全性、一致性和完整性控制。

数据库管理系统是现代信息系统不可或缺的组成部分,它为用户提供了一个结构化的数据存储方式,帮助用户高效地管理和利用数据,是企业信息化建设中的重要环节。

数据库管理系统的功能

数据定义功能:DBMS提供了数据定义语言(Data Definition Language,DDL),用户可以通过DDL定义数据结构、数据类型以及约束条件,从而实现数据模型的构建和管理。

数据操纵功能:DBMS支持数据操作语言(Data Manipulation Language,DML),用户可以使用DML对数据库中的数据进行查询、插入、更新和删除操作,实现数据的增删改查。

数据控制功能:DBMS提供了数据控制语言(Data Control Language,DCL),用户可以通过DCL对数据库中的数据进行权限控制,确保数据的安全性和完整性。

数据管理功能:DBMS负责数据的存储和管理,它可以将数据存储在物理介质上,并通过索引等技术提高数据的访问效率。

常见的数据库管理系统

关系型数据库管理系统(RDBMS):如Oracle、MySQL、SQL Server等,采用表格形式存储数据,通过结构化查询语言(SQL)进行数据操作。

面向对象数据库管理系统(OODBMS):如ObjectDB、db4o等,以对象的形式存储数据,支持面向对象的数据操作。

NoSQL数据库管理系统:如MongoDB、Cassandra等,采用非关系型的数据存储方式,适用于海量数据的存储和查询。

内存数据库管理系统:如Redis、MemSQL等,将数据存储在内存中,提供了高速的数据访问能力。

数据库管理系统的优势

数据一致性:通过事务机制和锁定机制,保证了数据操作的原子性、一致性、隔离性和持久性,确保了数据的完整性。

数据可靠性:DBMS提供了备份和恢复机制,可以防止数据的丢失和损坏,保障数据的安全性和可靠性。

数据安全性:DBMS支持用户权限管理功能,可以对用户进行身份认证和权限控制,保护数据不被未授权的用户访问。

查询优化:DBMS通过索引、缓存等技术对数据进行优化,提高了数据查询的效率和性能。

数据共享:多用户环境下,DBMS可以实现数据共享和数据隔离,保证不同用户之间的数据相互独立。

数据库管理系统的发展趋势

大数据:随着数据量的快速增长,数据库管理系统需要应对海量数据的存储和处理需求,大数据处理和分析成为发展的重点。

云数据库:云计算技术的发展推动了数据库管理系统向云端部署,提供了灵活的数据存储和服务,在多租户环境下实现资源共享和成本优化。

人工智能:数据库管理系统需要结合人工智能技术,实现数据的智能化处理和分析,提高数据管理的效率和精度。

物联网:随着物联网技术的普及,数据库管理系统需要支持物联网设备生成的海量数据的接入和管理,实现智能化的数据处理。

分布式系统:多中心、跨地域的数据存储和处理需求推动了数据库管理系统向分布式系统的转变,实现数据的分布式存储和计算。

结语

数据库管理系统作为信息系统的重要组成部分,扮演着数据管理和数据应用的关键角色。随着科技的发展和需求的变化,数据库管理系统在不断演进,逐步走向智能化、大数据化和云化的方向,为用户提供更加便捷、安全和高效的数据管理服务。

希望通过本文的介绍,读者对数据库管理系统有了更深入的了解,并在实际应用中能够更好地利用数据库管理系统的功能和优势,提升数据管理的水平和效率。

六、名词解释 数据库管理系统

数据库管理系统:名词解释

数据库管理系统(DBMS)是一种允许用户创建、更新、管理和检索数据的软件系统。它充当了数据的存储和组织者,使用户能够轻松地访问和操作数据。数据库管理系统可以看作是一个数据存储的仓库,提供了结构化、高效的数据管理方式。

数据库管理系统的关键功能:

  • 数据存储:数据库管理系统负责将数据存储在物理介质上,确保数据的安全性和完整性。
  • 数据管理:通过提供查询语言和接口,使用户可以对数据进行管理、筛选和更新。
  • 数据安全:数据库管理系统通过访问控制和权限管理来保护数据的安全,防止未授权访问。
  • 数据备份和恢复:确保数据的备份和恢复功能,以防止数据丢失或损坏。
  • 数据一致性维护:保证数据的一致性,避免数据的冲突和损坏。

常见的数据库管理系统:

在现代计算机科学中,有许多不同类型的数据库管理系统。以下是一些常见的数据库管理系统类型:

  • 关系型数据库管理系统(RDBMS):采用表格的形式来组织数据,并使用结构化查询语言(SQL)进行操作。常见的关系型数据库管理系统包括MySQL、Oracle和SQL Server。
  • 非关系型数据库管理系统(NoSQL):不使用传统的表格结构,而是采用文档、图形或键值对等形式来存储数据。MongoDB、Redis和Cassandra是常见的NoSQL数据库管理系统。
  • 分布式数据库管理系统:将数据存储在多个节点上,实现数据的分布式处理和存储。Hadoop、HBase和Cassandra都是分布式数据库管理系统的代表。

数据库管理系统的应用领域:

数据库管理系统在各个领域都有广泛的应用,包括但不限于以下几个方面:

  • 企业管理:企业可以利用数据库管理系统来存储和管理业务数据,实现数据的共享和分析。
  • 科研领域:科研人员可以利用数据库管理系统来存储研究数据、实验结果等信息。
  • 金融行业:银行、证券等金融机构可以利用数据库管理系统来管理客户信息、交易记录等数据。
  • 医疗保健:医疗机构可以使用数据库管理系统来存储患者病例、药物信息等医疗数据。

结语:

数据库管理系统在当今信息时代扮演着至关重要的角色,它不仅为数据的存储和管理提供了高效的解决方案,还促进了各个领域的发展和创新。了解数据库管理系统的核心概念和功能对于从事与数据处理相关的工作人员至关重要。

七、数据库是什么?网络用语解释

数据库是什么?

数据库是指按照数据结构来组织、存储和管理数据的仓库,具有高效地插入、删除和更新数据的特点。在计算机领域,数据库被广泛用于存储和管理各种类型的数据,比如个人信息、金融记录、产品信息等。

网络用语解释

在网络用语中,DB通常被用作“待办”的缩写,表示有事情需要处理或者待完成的任务。

在一些情况下,DB还可能表示“数据宝”,用来形容非常重要或者有价值的数据。

感谢您阅读本文,希望对您了解数据库和网络用语中的DB有所帮助。

八、凤仙怎么解释

如何解释凤仙

凤仙 (Fengxian),是一种美丽而迷人的花卉,常见于热带和亚热带地区。它以其独特的形态和鲜艳的花朵而受到人们的喜爱。在这篇文章中,我们将深入探讨凤仙的背景、特点以及如何解释其美丽之处。

凤仙的背景

凤仙原产于中南美洲,后来传入亚洲和其他地区。这种花卉属于凤仙族植物科,包括了多个品种和变种。凤仙通常生长在温暖湿润的环境中,对土壤和光照要求不高,适应性强。

古人常以凤仙来寓意吉祥和美好。据说,凤仙的花朵形状像凤凰展翅,因此得名凤仙。在中国传统文化中,凤凰象征着吉祥、美好和幸福。因此,许多人认为凤仙能带来好运和好运气。

凤仙的特点

凤仙的最大特点之一就是其美丽的花朵。凤仙花朵形状各异,有的像钟、杯、葫芦,有的像鸟、蝴蝶等。花色丰富多样,有红、黄、粉、紫等各种颜色。花朵绚丽多彩,经久不衰。

另外,凤仙的花语也令人向往。凤仙的花语是“美丽、吉祥、幸福、热情”,这些词语都与人们追求美好生活的愿望息息相关。因此,很多人将凤仙作为礼物赠送给亲朋好友,以表达对他们美好未来的祝福。

凤仙的繁殖方式多样,既可以通过有性繁殖,也可以通过无性繁殖。有性繁殖是指通过花粉与子房相结合,形成种子。而无性繁殖则通过茎叶或根茎的切割、扦插等方式进行。这些繁殖方式使得凤仙的种植和繁殖变得相对容易。

如何解释凤仙的美丽之处

凤仙之所以被视为美丽的象征,不仅仅因为其外貌的吸引力,还有其寓意的深层含义。我们可以从以下几个方面来解释凤仙的美丽之处:

  1. 形态多样:凤仙的花朵形态多样,从钟状到杯状,从葫芦状到鸟状,每一种形态都散发着独特的美感。这种形态多样性向我们展示了大自然的奇妙和无限的创造力。

  2. 色彩绚丽:凤仙的花色丰富多样,有红色、黄色、粉色、紫色等。这些鲜艳的色彩给人以愉悦和活力的感受。凤仙的色彩还可以代表不同的情感和意义,让人们在欣赏的同时产生共鸣。

  3. 花语深远:凤仙的花语与美好人生的追求息息相关,代表着美丽、吉祥、幸福和热情。这些花语传递了人们对美好未来的向往和祝福,令人心生敬重和喜爱。

总之,凤仙以其独特的形态和鲜艳的花朵赢得了人们的喜爱和赞美。它的美丽之处不仅仅体现在外表上,更蕴含着对美好生活的向往和追求。无论是作为花卉观赏还是作为礼物赠送,凤仙都能带给人们美好和幸福的体验。

九、名词解释数据库管理系统

在现代信息时代,数据库管理系统是信息技术领域中一个至关重要的概念。数据库管理系统,简称DBMS,是一种允许用户创建、访问和管理数据库的软件系统。为了更好地理解数据库管理系统的概念,让我们从名词解释开始。

名词解释

首先,我们来解释一下“数据库”的概念。数据库是一个按照数据结构来组织、存储和管理数据的集合。这些数据可以是各种类型的信息,如文本、图像、音频等。数据库的设计和管理是为了确保数据的安全、完整性和可靠性。数据库包含一个或多个表,每个表由一系列行和列组成,用于存储具体类型的数据。

接着,让我们理解“管理系统”的含义。管理系统是指一种软件系统,用于帮助用户组织、控制和管理特定领域的资源或信息。在数据库管理系统中,管理系统的作用是维护数据库的结构、安全性、性能和可用性。通过管理系统,用户可以进行数据的插入、更新、删除等操作,以满足不同的需求。

因此,综合起来,数据库管理系统是一种软件系统,旨在帮助用户创建、访问和管理数据库。它提供了一组功能和工具,用于数据的存储、检索、更新和删除,以及数据的安全性和完整性的保障。

数据库管理系统的功能

数据库管理系统具有多种重要功能,以确保数据库的高效管理和优化。以下是数据库管理系统常见的功能:

  • 数据定义功能:允许用户定义数据库中的数据结构,包括表、视图、索引等。
  • 数据操纵功能:允许用户对数据库中的数据进行插入、更新、删除等操作。
  • 数据查询功能:提供强大的查询工具,帮助用户检索指定条件下的数据。
  • 数据控制功能:控制用户对数据库的访问权限和操作权限,确保数据安全。
  • 数据完整性功能:确保数据库中的数据规范性和一致性,通过约束和验证机制。
  • 数据恢复功能:支持数据备份、恢复和故障恢复,保障数据的持久性。

数据库管理系统的类型

根据不同的需求和应用场景,数据库管理系统可以分为多种类型。常见的数据库管理系统类型包括:

  • 关系数据库管理系统(RDBMS):基于关系模型的数据管理系统,使用SQL语言进行数据操作。
  • 面向对象数据库管理系统(OODBMS):将数据视为对象进行存储和管理的系统。
  • 分布式数据库管理系统(DDBMS):将数据分布存储在多个计算机上,并实现数据的统一管理。
  • 内存数据库管理系统(IMDBMS):将数据存储在内存中,以提高数据访问和处理速度。

结语

综上所述,数据库管理系统在现代信息社会中扮演着至关重要的角色。通过理解数据库管理系统的含义、功能和类型,我们可以更好地利用这一技术工具,实现数据的高效管理和应用。希望本文能够帮助读者更深入地了解数据库管理系统这一概念,促进信息技术的发展和创新。

十、数据库管理系统名词解释

数据库管理系统名词解释

数据库管理系统(Database Management System,简称DBMS)是一种软件,用于管理和维护数据库的系统。它允许用户定义、创建、维护和控制访问数据库的内容。在现代信息技术环境中,数据库管理系统扮演着至关重要的角色,为各种组织和企业存储、管理和检索数据提供了便利。

关系数据库

关系数据库是一种结构化数据库,采用了基于关系模型的数据结构存储数据。关系数据库管理系统(RDBMS)是管理关系数据库的软件,它以表格的形式存储数据,并通过行和列的关系进行组织。用户可以使用SQL(Structured Query Language)查询数据库中的数据。

数据库管理系统的组成

数据库管理系统通常包括以下组件:

  • 数据模型:描述数据的结构和关系,如关系模型、层次模型、网状模型等。
  • 数据查询语言:用于查询和操作数据库中的数据,如SQL。
  • 数据完整性:保证数据的一致性、正确性和有效性。
  • 数据安全性:确保数据受到适当的保护,不被未经授权的访问。
  • 数据备份与恢复:定期备份数据库以防止数据丢失,并实施恢复策略。
  • 数据字典:存储数据库结构和元数据信息的地方。

常见的数据库管理系统

目前市场上有许多成熟的数据库管理系统可供选择,每种系统都有其特点和适用场景。以下是几种常见的数据库管理系统:

  • MySQL:一个流行的开源关系数据库管理系统,用于多种应用程序中。
  • Oracle Database:由Oracle Corporation开发的一种功能强大的商业数据库。
  • Microsoft SQL Server:由Microsoft提供的关系数据库管理系统。
  • PostgreSQL:一个功能齐全的开源数据库管理系统。
  • MongoDB:一个NoSQL数据库,适用于大规模数据的存储和处理。

数据库管理系统的优势

数据库管理系统的优势主要体现在以下几个方面:

  • 数据集中管理:将数据集中存储和管理,提高数据的安全性和可靠性。
  • 数据共享:多用户可以同时访问和共享数据,提高工作效率。
  • 数据一致性:通过事务管理确保数据的一致性和完整性。
  • 数据备份与恢复:定期备份数据以防止数据丢失,并能够快速恢复数据。
  • 数据安全性:通过访问控制和认证机制保证数据的安全性。

数据库管理系统的发展趋势

随着信息技术的不断发展,数据库管理系统也在不断演进和完善。未来数据库管理系统的发展趋势主要包括以下几个方面:

  • 大数据:针对大规模数据的存储和处理需求,数据库管理系统将更加注重性能和扩展性。
  • 云数据库:云计算技术的发展推动数据库向云端部署,提供更灵活和弹性的服务。
  • 人工智能:数据库管理系统将结合人工智能技术,实现智能化的数据管理和分析。
  • 边缘计算:面向边缘计算场景的数据库管理系统将得到更多应用,提供实时数据处理和分析能力。

总的来说,数据库管理系统在信息化时代扮演着重要角色,不仅帮助机构和企业管理大量数据,还为决策提供支持和依据。随着技术的不断进步,数据库管理系统的功能和性能将不断提升,为用户带来更好的使用体验和服务。

相关推荐