主页 > 芯片 > 上拉电阻下拉电阻还有什么电阻?

上拉电阻下拉电阻还有什么电阻?

一、上拉电阻下拉电阻还有什么电阻?

在电路中,上拉电阻、下拉电阻还有分压电阻、限流电阻、分流电阻、降压电阻及将电能转化为内能的电阻。

导体对电流的阻碍作用就叫该导体的电阻。电阻(Resistor,通常用“R”表示)是一个物理量,在物理学中表示导体对电流阻碍作用的大小。导体的电阻越大,表示导体对电流的阻碍作用越大。不同的导体,电阻一般不同,电阻是导体本身的一种性质。导体的电阻通常用字母R表示,电阻的单位是欧姆,简称欧,符号为Ω。

二、什么是上拉电阻,下拉电阻?

一、上拉电阻:将一个不确定的信号,通过一个电阻与电源VCC相连,固定在高电平。

作用:上拉是对器件注入电流;灌电流;当一个接有上拉电阻的IO端口设置为输入状态时,它的常态为高电平。

二、下拉电阻:将一个不确定的信号,通过一个电阻与地GND相连,固定在低电平。

作用:下拉是从器件输出电流;拉电流。

当一个接有下拉电阻的IO端口设置为输入状态时,它的常态为低电平。上拉电阻和下拉电阻2者共同的作用是:避免电压的“悬浮”,造成电路的不稳定。

三、电阻温度系数:解密电阻对应温度的关系

电阻与温度的关系

在电子领域中,电阻是一种常见的元件,其阻值随着温度的变化而变化。

电阻的温度系数

不同材料的电阻在温度变化时有不同的表现,这种特性被称为电阻的温度系数

正温度系数与负温度系数

电阻随温度升高而导致阻值增大的材料为正温度系数;而随温度升高导致阻值减小的是负温度系数

使用电阻温度系数计算温度

通过测量电阻值的变化,可以利用电阻温度系数的数值来计算温度的变化,这在很多电子设备中有重要应用。

常见的电阻温度系数

常见的电阻材料中,铜的温度系数大约为0.00393,镍的温度系数大约为0.00617,铁的温度系数大约为0.00651。

小结

电阻的温度系数对于电子元器件的正常工作至关重要,了解不同材料的温度特性,有助于正确应用和选型电阻。

感谢阅读,希望通过本文能更好地了解电阻与温度之间的关系。

四、芯片电阻和电阻率关系?

电阻率是用来表示各种物质电阻特性的物理量,一般用来算电阻的大小和电阻丝长度,横截面的值有关。

五、电阻和芯片的关系?

电阻和芯片没有任何关系。电阻只是电器元件中的一个小零件儿,芯片是核心。

六、电阻和温度的关系?

怎么形成导体电流

做切割磁力线运动的导体产生电流的原因,它是三个因素结合而成的结果。其一是导体上的原子核外带负电的电子;其二导体受到的外动力并且力的方向垂直于磁力线方向;其三是磁力线。导体产生电流主要原因是组成磁力线的微体核能,该核能上有双扇子形薄片和中间凸起的圆形薄片,这两个薄片垂直相交,交线段为双扇子形中间部位的中心线段和中间凸起的圆形薄片的直径。这个重合线段既是中凸圆交电力线的直径也是扇子形电力线的正中间线段,它们是相等的。这两个相垂直薄片都是按一定规律排列成的电力线,其中圆形薄片是一个中间凸起的曲面圆交电力线,它是由圆心发出的正负相邻均匀排列的电力线并组成的中间凸起的曲面圆,这些电力线都交于圆心,叫中凸圆交电力线,无论正或负电力线的方向都朝圆心吸,圆片上间夹着的正电力线对稍微加力的导体上带负电电子产生异性相吸,使电子吸到圆片电力线的圆心区域,此时的电子既受圆片上正电力线朝圆心的吸力,又受到加在导体运动的外力带动导体的电子稍微动些,这两个力使电子移动到圆片电力线的圆心区域,当电子到达水平的圆片电力线的圆心区域时,就立刻被此处的扇子形平行电力线向上的正电电力,将电子推到该电力线顶端并且进行排列成扇子形的电子波。

各因素的方向

导体做垂直切割磁力线运动力的方向垂直于磁力线,若这个使导体运动的动力线方向,能与组成磁力线核能上的双扇子形平面垂直时,为最佳动力线方向。由于组成磁力线上核能的中凸圆交电力线平面垂直于双扇子形电力线,所以使导体运动的动力线方向,几乎平行或重合于中凸圆交电力线平面,同样也是选择的最佳动力线方向,这样可知使导体运动的动力线方向与磁力线垂直;动力线方向与核能上的双扇子形电力线平面垂直;动力线与核能上的中凸圆交电力线平面平行或重合;动力线与双扇子形电力线平面上排列的扇形电子波仍然垂直。动力线在这里相当于一组平行线,其宽度等于磁力线范围尺度,长度等于导体的运动距离,厚度等于导体直径。由于平行动力线能使导体上的电子稍微动些,这说明动力线是不显电性的电力线即隐形电力线,其电量特小。若导体放在磁力线里保持静止状态,导体是不会产生电流的,若运动就会产生电流这说明,组成磁力线核能的圆片上的正电力线吸引稍微加力电子移动到它圆心,再由双扇子形平行电力线向上推送电子排列成扇子形电子波,该波平面垂直于动力线并且重合或平行于磁力线,在这里说明电子的体积,远远小于组成磁力线核能上的双扇子形电力线体积和中凸圆交电力线体积。在穿过导体的整齐磁力线上排列着扇子形电子波,波与波下底直线相连,并且朝动力线(导体运动方向)右侧直线运动。从这里可以看到两个相互垂直的隐形(不显电性)电力线即动力线与磁力线产生一个与它们两都垂直的显性电力线(在导体上),这个电力线方向在动力线右侧,该电力线(在导体上存在)上排列着双扇子形电子波串并且沿着电力线方向运动,这就是说两个隐形电力线产生了一个显性电力线,构成三线垂直。实质是磁力线垂直方向上的动力线,定向动力线上加在直线形导线的垂直方向上,并且沿着动力线的垂直方向运动,直线形导线上产生垂直于动力线的双扇子形电极串,这些电极产生原因是,穿过导体的组成磁力线的核能上的圆片电力线,向圆心吸导体上的电子,双扇子形电力线将这些吸到圆心区域的电子,在它的上面排列成双扇子形电子波,本身磁力线整齐排列的,那么它形成的波同样也是整齐排列的,这些电子波平面原本是正平行电力线上排列着的电子,这些成平面的负电电子自然就会倾斜一方向,内层的平行正电力线同样也倾斜相对的另一方向(这是电的方向性规律引起的),在这里从推导体运动的动力起点为界点,正电倾斜方向在界点右侧,负电倾斜方向在界点左侧,也就是站在界点即发出动力起点朝推导体的运动力方向看,处在磁力线范围的导体上排列的双扇子形平面电子波串,这些自然平行的电子波串构成这段导体,整个导体上的电子波平面外层的电子,向发出动力线起点的左端倾斜,使左侧显出负电;内层的正双扇子形正平行电力线,向发出动力线起点的右侧倾斜,使右侧显出正电,这段导体自然的形成了发动力线起点的左右电极,它的规律是右正极左负极。形的右端各个电子波上的正电力线,这就成为导体的双扇子形电极,这个电极串处在磁力线范围内的导体上,从正电极到磁力线以外的曲折或遥远的长度导体再回到磁力线范围内的另一端负极,这个整体的导体是一个大电极。正电极与处在磁力线以外导体上的原子核外电子之间自然出现异性相吸,由于原子核对电子的吸引力远远超过了正电极对电子的吸引力,所以正电极受到电子吸力进行移动,负电极受到原子核上的电子推斥力作用,同样背离电子移动,这样电极两端的吸推两个同向力,使扇子形电子波体在导体上运动。

三种相垂直电力线

动力线垂直磁力线也垂直电力线(导体上)。动力线是立体平行隐形电线;磁力线是立体平行隐形电力线;电力线是立体平行电子波串。动力线上的隐形电量比磁力线隐形电量大些,电力线上的电量就是立体平行的电子波串它是显性的大电量与磁力线的电量的的不可比拟。这些说明了在做切割磁力线运动的导体,用的两个垂直的隐形电力线,产生垂直于动力线并且为显性电的电子波(相当于磁力线范围的导体电流)。导体上的电子波平面垂直于组成磁力线核能上的中凸圆交电力线平面,与导体运动方向上的平行动力线垂直;与双扇子形平行电力线平面重合或平行。在磁力线范围的运动导体产生电子波形的电流方向,永远在导体运动方向的右侧。

动力线与磁力线产生电子波

动力线垂直于双扇子形电力线平面,这样中凸圆交电力线向四面八方吸电子到其圆心区域,但是顺动力线方向吸的电子比四面八方吸的电子的力稍微大些,这样有利于电子到达扇子形平面底处,并且向上推送电子进行排列成双扇子形电子波。再加上能使扇子形在导体上占有整齐不脱导体边位置。具体的是吸来的电子直接进入扇子形与圆形交线中心处,由于扇子形平面对电子的吸力,使吸到中心处的电子,在交线上以中间向两旁稍微散开些,并且顺着垂直方向上的扇子形平行电力线向上推送电子,使电子到达扇子形顶端排列成扇子形模样,又由于扇子形本身就像波,所以叫扇形电子波。

电流最大值对应的动力方向

导体在磁力线垂直方向上做切割磁力线运动,导体与磁力线的关系是,导体受到的外动力线方向既垂直于磁力线;并且还要与组成磁力线核能上的中凸圆交电力线平面平行,或经过该平面;还要与组成磁力线核能上的双扇子形平面垂直,符合这条件下的运动状态的导体,所受的动力方向才是最佳选择。它们的原因是扇子形电力线平面垂直于中凸圆形电力线平面并且从中间垂直相交于线段,该线段既是扇子形中间线段又是中凸圆形直径。由于中凸圆交电力线是正负相邻均匀排列的,所以在它的平面电力线范围内,向四面八方的位置上,存在着无数个相交电力线朝圆心的吸力,对稍微加力的正电粒子或稍微加力的负电粒子,都能使它顺着对应的异性电力线运动到其圆心区域,在这里中凸圆交电力线上的正电力线,对导体上的加同向力的电子产生吸引,使电子顺着中凸圆交正电力线快速移动到其圆心区域,这是单纯的中凸圆交电力线能使稍微加力的电子运动规律。

电子波形成原理

对于切割磁力线运动的导体上最简单的力,就是平行定长度的动力线,推动导体在垂直磁力线方向上运动,导体上的原子核外围电子自然随着该力出现受力趋势,相当于稍微加力的电子。导体进入磁力内,实质上是磁力线穿入导体上,那么组成磁力核能上的圆片正电力线向四面八方吸收稍微加力的电子,使它们飞般的到达圆心区域,通过圆心直径上的双扇子形平行电力线,将身边的电子迅速推到双扇子形顶端,进行从上向下排列成扇子模样,这就是电子波,由于每根磁力上由无数个单体核能组成的,每个单体核能都含有着一个双扇子形平行电力线,若处在导体体积上所有磁力线上的双扇子形平行电力线上,都排列上电子波,对于每个正电力线的扇子形平面上全部是电子排列的,该电子面的电力相当大,由于带电体或带电面有一规律,即带电体或带电面上的电会自然分开,形成电量相等的两极,这是因为面内层是正电力线的正电,外层是电子上的负电,所以电子排列的双扇子形电子波从双扇子形中间分开为两极,电子稍微倾向后面显出负电,正电力线稍微线倾向前面显出负电,同一平面上的扇子形电子波行列同行列,首尾异性相吸成串。这就是做切割磁力线运动导体上的电子波串形成原理。

电子波的方向

电子波的底是直线相连的。起初在每根磁力线上,按照它上面的扇子形状排列的电子波,由于扇子形平面垂直于导体的运动力线,所以扇子形平面上排列的电子波同样也垂直于导体的运动力方向,电子波在导体相连的长度恰巧是导体处在磁力线上范围的宽度,并且也是推动导体的平行动力线的宽度,这就是磁力线范围处的导体上排列成的相连的电子波。

导体电子波的运动方向

当处在磁力线区域的导体上全部排列成有规律的整体电子波串行列时,由于各个单波相当于一个微小电极,正电极总是在切割磁力线运动力方向的右侧,这样它们连成的整体串同样也分正负电两极,正电极同样也在切割磁力线运动力方向的右侧时,对于处在磁力线范围的那部分导体成为整体的大电极,这个大电极的正电极仍然在切割磁力线运动力方向的右侧,这部分导体两端成正负电极,电力相当大,在离开磁力线范围的导体上,对靠近正电极的原子核外电子产生很大的吸力,由于原子核外电子不能挣脱原子核对它的吸力,它们之间的吸力,使正电极向电子方向运动;对靠近负电极的原子核外电子产生很大的排斥力,对负电极起到推动作用,这就是同性相斥异性相吸规律,产生了后面的负电极受到推力,前面的正电极受到靠前的电子吸力,并且吸力与吸推力作用在同一整体大电极的首尾,这样使电子波组合体在磁力线范围导体上运动。这就是磁力线范围的导体电流。

曲面圆交电力线怎样吸电子

由于这个曲面圆片上无数个电力线和其对应的四面八方无数个朝圆心吸力方向,这些电力线全部与磁力线方向垂直,所以对导体加力的电子就沿着垂直于磁力线方向的圆片的圆心移动,此时电子受到两种作用,即导体受的外力,引起导体的电子稍微加力,圆片上的无数方向正电力线就要四面八方向圆心吸这些加力电子到其圆心区域,此时的电子立即被其垂直方向上的平行扇子形正电力线,将电子推送到扇子形顶端并且按照扇子形状进行排列,排列成一连串贴在磁力线上的双扇子形电子波并且下面为直线形。

为啥叫扇子形电力线

双扇子形电力线薄片的两个扇子各自中间部分稍长些,才叫它扇子形的平行电力线,它们这两个扇子并列在一起组成双扇子形电力线,从与它相交的圆面直径为界,向上部分扇子形平行线为正电力线,并且方向朝上,向下部分电力线为负电力线,并且方向朝下,底下是连着的两个弧形线段,由于双扇子形电力线的下方为负电力线,它与带负电的电子是排斥作用,不能排列电子,只有上方的正扇子形电力线排列电子。由于这个微小双扇子形平行电力线的上下为异性电,所以这些微体接触时就会首尾异性相吸成串,这就是磁力线,这也是它能连成磁力线的第一个作用。它的第二个作用,就是双扇子形向上的正电力线,对穿着磁力线的导体上的带负电电子进行排列成电子波。具体的是将电子吸到双扇子顶端,进行从上往下排列到正负分界线位为止,排列成的电子波上为双扇子形状下为直线形。这就是平面电子波。

曲面螺旋形电流

电子波在导体上运动,只要离开磁力线的导体,电子波就不受磁力线的束博力,就会翻劲成曲面螺旋形状仍然运动,并且绕着导体中心线运动,这个圆形螺旋体积几乎与导体体积全等或小于导体的体积。

导体电子三次运动

起初导体做垂直切割磁力线运动的方向,导体的电子顺正电力线方向移动到圆片电力线的圆心区域这是电子第一次运动,再由扇子形正电力线向上推力,使导体的电子出现第二次向上移动,移动方向与导体运动方向相垂直,当电子移动到扇子形顶端时按规律排列成波,波出现两极,磁力线以外的导体上的电子,对波的正极相吸对负极相斥,这样电子波正极受电子吸引运动,这就是磁力线范围的电流方向,它永远在导体运动方向的右边,这是导体上排列的波形电子运动,这属于导体电子的第三次移动。

电形状的性质

正负异性电除了具有本能性即异性相吸与同性相斥外还有,电的形状性质,若点电,是微小圆柱平行电力线和它外套的无数方向的球交电力线组成的微体,电线交于球心,并且正负相邻均匀掺杂排列,它是不定的方向;正电电力线或负电力线电力线(指单性),具有一定的长度和方向,它是某种点电连成的串,若它与异性不相等的电相吸,仍然保持着线形状,它就会形成上下两极,两极电的正负性是靠产生原因确定的,比如做垂直切割磁力线运动的直线导体上,排列的扇子形电子波面的正负极,它是在双扇子形的平面平行正电力线的每根电力线,吸上带负电的电子自然排列成电子串,排列成的各个电子串组合仍然是平面,但是双扇子形平行正电力线的电量与它上面排列的所有电子的电量是不相等的,此时正平行电力线面就要向动力线的右侧倾向,负电的双扇子电子面就要向动力线左侧倾向,这是规律,再比如旋转力使正负电粒子旋转运动,以旋转面为界限,正电粒子向上发出正电力线,负电粒子发出负电力线,并且正负电力线方向相反,这就是旋转力使粒子产生立体平行电力线,分上下两极它的细节是,旋转力方向确定正负电极的位置,若旋转动力是顺时针,以时针面为界面,正电力线在时针背面,负电力线在时针正面,这是正负电粒子随运动力产生电极的规律,做切割磁力线运动导体上排列成的电子波平面同样实施,在这里导体运动瞬间排好电子波,导体仍然运动着相当于时针在短时间的直线运动,那么这些排好的电子波就会在时针背面形成负电极,时针正面形成正电极。产生电极的原因对磁力线无关系,磁力线在磁力产电过程中,只起到排列双扇子形电子波的作用。带电粒子、面、体在随某动力的方向上运动时,它就会在运动力方向的垂直的方向上产生直线形两极,并且动力线右侧为正电极,左侧为负电极。产生的正负电极,起决定性作用的是动力方向。这个电子波就是以运动力为界分成左右两极的;对于面电,它必然是正负电不等的内外两层形成的,它在静止的瞬间,正负电层各向对方的反方向出现倾向趋势,自然形成正负电两个极,根据面积等分开,一半面积为正电极另一半面积为负电极;对于电体,必然是带电面有规律排列成的,同样按等体积分开两半,一半为正电极另一半为负电极。在导体上形成的电子波正负两极,是两极外区域电子吸正极,推负极,这两个同向力使电子波体电极,向正极方向运动形成电子波流,这就是处在磁力

线范围内的导体电流。总的来说点带电体是交于一点无数个方向的正负相邻电力线组成的点电体,它是不定方向的;线分正负向为线电极;面分正负向为面电极;体分正负向为体电极。

顺力运动的带电体产生电极

导体做切割磁力线运动的动力,起两个作用,第一使导体上的电子稍微动些,第二使导体上排列成的双扇形电子波,产生正负直线两极,并垂直于动力线方向,正电极在动力线右侧,负电极在动力线左侧。随飓风旋转的带正电粒子与带负电粒子,假设旋转力为圆形表逆时针旋转的,在圆形表的平面分离出正面为正电粒子背面为负电粒子,这些分离出的正负粒子也是个电极,同样符合动力线产生电极的右正左负规律。旋转平面上的正负粒子上下分离,若将旋转力仍然为逆时针旋转,正粒子电极为时针表背面,负电粒子电极为时针表正面。假设正负粒子是正负电子,正电子本身聚集核能在表的背面,发射出定长度的平行正电力线;负电子本身聚集核能在表正面发射出定长平行负电力线,这两组上下正负平行电力线构成的是一个大的正负电极。这些电力线组成以表圆面为底面积的圆柱体,若将表背面组成圆柱体的平行正电力线上,排列负电的电子,成为平行负电子串组成的圆柱,正电力线上的正电量与排列的电子负电量不一定相等,若这个电子串圆柱体顺着某方向运动,那么圆柱上的每根电子串上的电子,就会向运动力方向的左侧倾斜,每个电子串上的正电力线就会向运动力方向的右侧倾斜,这个电子串圆柱,无论怎样状态放置,都以等体积分开自然形成正负电两极,它与导体上用磁力线排列成的双扇子形平面电子波,随动力运动形成的双扇子形电子波的正负电极很相似,只不过体与面不同。在导体上电子经磁力线排列的双扇子形电子波体,是一个以正电极为起点随导体整个导体,无论导体多长或怎样的变形最后回到双扇子形电子波体的负极上,这个整体是是一个完整的电极。同样将时针表正面发射点负电力线上排列上正电子,形成的正电子串同样组成圆柱,该圆柱按某方向运动,正电串圆柱体,同样也分成以运动力方向的右侧为正电极,左侧为负电极。这就是顺动力线运动的带电线、带电面、带电体,产生的线电极、面电极、体电极,正负极以动力处的方位规律来确定电极正负。

七、电阻大小与温度关系?

对大多数导体来说,温度越高,电阻越大,如金属等;对少数导体来说,温度越高,电阻越小,如碳。

八、上拉电阻下拉电容详解?

这是晶体管偏置电路中的原件,上拉电阻就是一端与电源正极相连,另一端与晶体管基极相连,为基极导通提供偏置电压的器件。下拉电容就是一端与晶体管基极相连,一端与电源负极相连,由于电容具有隔直通交的作用,起到削弱脉冲杂波的作用的原件。

九、电阻与温度的关系?

对于金属而言,金属的电阻的原理是:金属中的自由电子以外加电场作用下作定向运动时,可能会与金属晶体中金属原子和金属阳离子(等你学了高中化学中的金属晶体结构后就会明白的)相碰撞,从而受到阻碍。所以起阻碍电流作用的是金属原子和金属离子。而当温度升高时,原子和离子的热运动加剧,它们与运动着的自由电子发生碰撞的概率增加,于是温度升高时,金属电阻通常是增大的。 灯泡的电阻用万用表去量这里的高温是相对而言,相对于绝对零读要高上一二百度的就算是高温超导体了。超导电性是物质的一种特殊性质,处于转变温度的物质会进入一种全新的特性。超导现象是一种突变现象。对于导体的导电性,实际与物质的平均动能没有什么太大的关系,而与介质中自由电子的数量和活动能力紧密相关,自由电子的数量越多,介质的导电性越好,电阻越低。对于一般的介质而言温度越高介质中的自由电子越少活动能力越弱,电阻越大。而有一少部分介质,温度越高电阻越小,这种介质制成的电阻有个专有名称叫做负温度系数热敏电阻。出来的值(灯泡冷却的时候量的值)远小于灯泡工作时,

十、上拉电阻和下拉电阻的工作原理?

上拉电阻:将一个不确定的信号(高或低电平),通过一个电阻与电源VCC相连,固定在高电平。

下拉电阻:将一个不确定的信号(高或低电平),通过一个电阻与地GND相连,固定在低电平。

上、下拉电阻的作用:

一般说法是上拉增大电流,下拉电阻是用来吸收电流。

1、当 TTL 电路驱动 CMOS 电路时,如果电路输出的高电平低于 CMOS 电路的最低高电平 (一般为 3.5V), 这时就需要在 TTL 的输出端接上拉电阻,以提高输出高电平的值。

2、OC 门电路必须使用上拉电阻,以提高输出的高电平值。

3、为增强输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

4、在 CMOS 芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻以降低输入阻抗, 提供泄荷通路。

5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干 扰能力。

6、提高总线的抗电磁干扰能力,管脚悬空就比较容易接受外界的电磁干扰。

7、长线传输中电阻不匹配容易引起反射波干扰,加上、下拉电阻是电阻匹配,有效的抑制 反射波干扰。

相关推荐