一、无线充电发射芯片
无线充电发射芯片介绍
无线充电技术已经逐渐成为现代电子产品的重要组成部分,而无线充电发射芯片则是实现这一技术的关键元件。它可以将电能从充电器传输到设备中,无需使用传统的线缆连接。这种技术不仅方便了用户,而且减少了线缆的烦恼,降低了设备之间的摩擦和磨损。
无线充电发射芯片的应用场景
无线充电发射芯片在许多领域都有广泛的应用,如智能手机、平板电脑、智能手表、无人机、电动工具等。这些设备都可以通过无线充电发射芯片来实现无线充电,从而方便用户的使用和携带。
无线充电发射芯片的技术原理
无线充电发射芯片的工作原理是基于磁场感应。当充电器和设备之间产生磁场时,芯片通过磁场将电能传输到设备中。这种技术具有传输距离远、充电效率高等优点,但也存在一定的辐射影响和安全隐患。
无线充电发射芯片的发展趋势
随着无线充电技术的不断发展和普及,无线充电发射芯片的市场需求也在不断增长。未来,无线充电发射芯片的技术将更加成熟,传输距离和充电效率将进一步提高,同时成本也将逐渐降低。此外,无线充电技术还将与人工智能、物联网等技术相结合,实现更加智能化的应用场景。
如何选择合适的无线充电发射芯片
在选择无线充电发射芯片时,需要考虑设备的功率、传输距离、充电效率、成本等因素。同时,还需要考虑芯片的兼容性、稳定性、可靠性等方面的性能指标。建议选择具有良好口碑和信誉的供应商,以确保所选芯片的质量和性能。
以上就是关于无线充电发射芯片的一些基本介绍,相信随着无线充电技术的不断发展和普及,这种芯片将会在更多的领域得到应用。二、2262芯片,无线发射?
2262/2272是一对编解码芯片,没有调制。2262/2272工作是脉冲,不能直接发射,工作频率是315M是另外的振荡电路产生的。给315MHz振荡器后推动级加受2262/2272控制输出电路,再功放发射就可以了。
三、收音发射芯片
在现代通信技术的快速发展中,收音发射芯片(收音发射芯片)起着至关重要的作用。正是有了这些精密的芯片,我们才能够享受到高质量和高效率的音频传输。本文将介绍收音发射芯片的工作原理、应用领域以及市场前景。
收音发射芯片的工作原理
收音发射芯片是一种集成电路,它能够将音频信号转换成电磁波,然后通过天线发送出去。它主要由放大器、调制器和滤波器等组成。
首先,放大器会将输入的音频信号增强,以保证信号质量和距离传输的稳定性。随后,调制器会对音频信号进行调制,将其转换成高频信号。这一步骤非常重要,因为它决定了信号的传输距离和抗干扰能力。
最后,滤波器会对调制后的信号进行滤波处理,以消除噪音和干扰。滤波器根据不同的频段将信号分离,使得接收者能够更清晰地获取所需的音频信息。
收音发射芯片的应用领域
收音发射芯片广泛应用于无线通信领域,以满足人们对高品质音频传输的需求。下面是几个典型的应用领域:
- 广播电台:收音发射芯片是广播电台不可或缺的关键技术。它可以将广播节目转换成电磁波,并广播到附近的收音机,让听众们收听到清晰的音频信号。
- 无线麦克风:现代舞台演出和会议等场合经常使用无线麦克风。收音发射芯片可以将麦克风录制的声音转换成电磁波,实现无线传输,方便表演者和演讲者的移动。
- 无线耳机:随着智能手机等移动设备的普及,无线耳机成为越来越受欢迎的选择。收音发射芯片实现了音频信号的无线传输,使用户能够自由地享受音乐和通话。
- 远程监控:在安防领域,收音发射芯片被用于实现音频信号的远程监控。例如,它可以将摄像头捕捉到的声音传输到监控中心,以提供更全面的安全保护。
收音发射芯片的市场前景
随着无线通信技术的快速发展,收音发射芯片市场呈现出极大的潜力和广阔的前景。
首先,音频传输是人们生活中不可或缺的一部分。随着人们对音频质量和无线便利性要求的提高,收音发射芯片作为关键元器件的需求将不断增加。
其次,各种应用领域中对于高质量音频传输的需求不断扩大。无线麦克风、无线耳机等产品的普及推动了收音发射芯片市场的发展。同时,远程监控、广播电台等领域的不断进步也为其提供了更多的应用机会。
此外,物联网和智能家居的兴起也为收音发射芯片市场带来了新的机遇。随着智能设备的普及,人们对于无线音频传输的需求将进一步增加。
综上所述,收音发射芯片是现代通信技术中不可或缺的关键元器件。它的工作原理和应用领域使其在无线通信领域具有广泛的应用前景。随着无线通信技术的不断发展,收音发射芯片市场将迎来更加广阔的发展空间。
四、315无线发射接收芯片怎么用?
315M发射电路原理
静态时,12V通过L1、R1、Q1的B-E向Q2的C极提供电压,当DATA来数据时,使Q2导通,这时Q1的E极旧处在0电位,原静态时Q1是截止的。
当Q1的E极处0电位,Q1管导通,使得C极信号为B极的晶振频率。
当DATA的信号不是一直处在高电平时,Q2就处在通断状态,就是说DATA使Q2按DATA的状态时通时短,这就是Q1的通断状态取决于DATA数据,所以Q1的C极信号其实是DATA通过Q2的B-C加在Q1的E极上,即DATA直接调制在晶振315频率上的信号通过天线发射出去。
五、无线充电发射芯片:解读未来智能充电技术的核心
什么是无线充电发射芯片?
无线充电发射芯片是一种使用电磁场传输能量的技术,能够将电能无线传送到可充电设备中,实现便捷高效的充电方式。相较于传统有线充电方式,无线充电发射芯片具有更高的充电效率和便携性,成为未来智能充电技术的核心。
无线充电发射芯片的原理
无线充电发射芯片利用电磁感应原理,将电能转化为电磁能,并通过发射电磁场的方式传输电能。发射芯片中的高频电流在导线上循环流动,形成交变磁场,然后通过磁共振的方式将电能传送到接收设备中的接收芯片。接收芯片再将接收到的电磁能转化为电能,供给设备进行充电。
无线充电发射芯片的优势
1. 方便快捷:不需要插拔充电线,只需将设备放置在发射芯片附近即可充电,提高了使用的便捷性。
2. 适用范围广:无线充电发射芯片适用于各种可充电设备,如智能手机、平板电脑、智能手表等,满足了不同设备的充电需求。
3. 充电效率高:无线充电发射芯片采用了先进的传输技术,充电效率高于传统充电方式,节省了充电时间。
4. 可移动灵活:无线充电发射芯片无需与设备直接接触,设备可以自由移动,不受充电线长度的限制。
无线充电发射芯片的应用领域
无线充电发射芯片已经在各个领域得到了广泛应用:
- 消费电子产品:智能手机、平板电脑、智能手表等设备的无线充电已成为行业的趋势。
- 汽车行业:无线充电发射芯片在电动汽车和混合动力汽车的充电方面具有巨大潜力。
- 医疗设备:医疗设备可以通过无线充电方式大幅减少电线的使用,提高患者的便利性和安全性。
- 家居和办公设备:如智能音箱、无线鼠标、键盘等,无线充电发射芯片为这些设备提供了充电便利。
无线充电发射芯片的未来发展趋势
随着技术的不断进步,无线充电发射芯片将迎来更广阔的发展空间:
1. 跨设备充电:未来无线充电发射芯片将支持多种设备的同时充电,提供更多元化的充电方案。
2. 跨异构系统充电:无线充电发射芯片将支持不同设备和系统之间的充电互通,为用户提供更加统一的充电体验。
3. 公共充电设施:无线充电发射芯片将广泛应用于公共场所的充电设施,如咖啡厅、机场、酒店等,方便人们在外出时进行充电。
无线充电发射芯片作为未来智能充电技术的核心,具有广阔的应用前景和发展空间。它将为人们的生活带来更多便利和效率,让我们迈向无线充电时代。
感谢您阅读这篇文章,希望通过本文能够帮助您更好地理解无线充电发射芯片的原理、优势和应用领域,了解未来无线充电发展的趋势。
六、无线路由器发射芯片过热?
亲,任何电器都会发热,路由器当然也不例外。不过路由器发热量较小,一般不用顾虑。但要注意大多数路由器的散热孔是在下方的,所以要注意不要把路由器放在软绵绵的东西上以至于妨碍正常散热,更尽量不要把路由器放在猫上面,不然这两个家伙都散热困难会影响使用寿命滴。
七、吉他无线发射干扰
在无线电的应用领域中,干扰一直是一个令人头疼的问题。其中,吉他无线发射干扰一直是一个受关注的话题。
吉他无线发射干扰是指在吉他使用无线发射设备时,由于电磁干扰导致音频信号质量下降或者产生噪音的现象。对于吉他手而言,这种干扰会极大地影响他们的演奏效果以及舞台表现。
吉他无线发射系统简介
吉他无线发射系统是吉他手们非常常用的一种设备。它通过无线电波将吉他信号传输到接收器,使吉他手可以在舞台上自由移动而不受有线连接的限制。
吉他无线发射系统由两部分组成:发射器和接收器。发射器将吉他信号转换为无线电波并发送出去,而接收器则负责接收并解码这些无线电波,将其转换回原始的音频信号。
吉他无线发射干扰原因
吉他无线发射干扰的原因有很多,下面我们来详细探讨几个常见的干扰源:
电磁干扰源
如今,现代社会中存在着大量发射电磁波的设备,例如手机、电视、无线网络等。这些设备在工作时会产生大量的电磁辐射,可能会对吉他无线发射系统产生干扰。
尤其是在舞台演出等高强度电磁场环境下,电磁干扰尤为明显。当吉他无线发射系统处于这样的环境中时,其性能可能会受到明显影响。
频率选择错误
吉他无线发射系统需要选择合适的工作频率才能正常工作。如果选择的频率与其他无线设备或电台的频率冲突,就会导致干扰现象。
因此,吉他手在使用无线发射系统时,需要选择与其他设备工作频率不冲突的频段,以避免干扰的发生。
设备设计缺陷
有些廉价的吉他无线发射系统由于质量问题或设计缺陷,本身就存在干扰的可能性。
例如,发射器与接收器之间的信号处理电路设计不佳,容易受到外界干扰或自身干扰。这种干扰一旦发生,会导致音频信号的失真、噪音的产生等问题。
吉他无线发射干扰的影响
吉他无线发射干扰对演奏的影响是非常明显的。下面列举了几个可能出现的问题:
- 音质下降:干扰会导致音频信号质量下降,使得吉他的音色表现不够纯净和清晰。
- 噪音产生:干扰会产生噪音,噪音的存在会干扰吉他手的演奏,并降低他们的舞台表现水平。
- 信号丢失:严重的干扰可能导致信号完全丢失,使吉他手无法正常演奏。
减少吉他无线发射干扰的方法
为了减少吉他无线发射干扰对演奏的影响,可以采取以下几个方法:
选择合适的工作频率
在使用吉他无线发射系统时,需要选择与其他设备工作频率不冲突的频段。
可以通过使用其他设备检测工作频率的方法,找到一个相对较为空闲的频段作为吉他无线发射系统的工作频率。
增加抗干扰能力
选择质量好的、抗干扰能力较强的吉他无线发射系统。
一些高端的吉他无线发射系统具备较强的抗干扰能力,可以在复杂的干扰环境中正常工作,并保证音频信号的质量。
适当摆放发射器和接收器
发射器和接收器之间的距离、位置的选择也会对吉他无线发射系统的干扰产生一定的影响。
在使用时,可以尝试不同的摆放位置以及距离,找到一个相对较好的布局,以减少干扰的发生。
加强场地管理
如果是在演出时出现干扰问题,可以通过加强场地管理的方式来减少干扰的产生。
减少演出现场的电磁干扰源数量,合理布置设备,避免电磁干扰源与吉他无线发射系统的距离过近等措施都可以帮助减少干扰。
总结
吉他无线发射干扰一直是一个令吉他手们头疼的问题。了解干扰的原因和影响,采取适当的干扰缓解措施可以帮助吉他手在演奏中获得更好的效果。
希望本篇文章能够对吉他手们解决吉他无线发射干扰问题提供一些参考和帮助。
八、X无线芯片
探索X无线芯片的未来发展
无线通信技术的快速发展,为各行各业带来了前所未有的变革。作为一种核心的硬件技术,无线芯片在这一过程中起到了重要的作用。今天,我们将聚焦于X无线芯片,探索其在未来的发展前景。
X无线芯片的基础
X无线芯片是一种高度集成的无线通信解决方案,具有出色的功能和性能。它由一系列组件组成,包括射频收发器、数字信号处理器和微控制器,实现了无线通信的各种功能。这种芯片广泛应用于智能手机、物联网设备、车载通信和工业自动化等领域。
X无线芯片的优势
X无线芯片相比于其他类型的无线芯片具有诸多优势。首先,它具有较低的功耗,能够延长设备的电池寿命。其次,X无线芯片在设计上更加灵活,支持多种通信标准和频段。此外,这种芯片具备高度集成的特点,能够提供更好的系统性能和稳定性。
除此之外,X无线芯片还具备快速的数据传输速率和较大的覆盖范围。这使得各种智能设备可以以更高效、更可靠的方式进行数据传输和通信。对于物联网设备来说,这种特性尤为重要,能够支持海量设备的连接需求。
X无线芯片的应用领域
X无线芯片作为一种通用的无线通信解决方案,被广泛应用于多个领域。以下是一些典型的应用领域:
- 智能手机:X无线芯片为智能手机提供了快速、稳定的数据传输能力,支持多种无线通信标准,如4G和5G。
- 物联网设备:物联网设备通常需要进行大规模的数据采集和传输,X无线芯片的高速传输和稳定性使其成为物联网领域的关键技术。
- 车载通信:X无线芯片应用于汽车领域,可以实现车辆之间的无线通信,提高驾驶安全性。
- 工业自动化:X无线芯片可以用于实现工业自动化系统之间的无线通信,提高生产效率。
可以看到,X无线芯片在各个领域都扮演着重要的角色,推动着现代社会的发展进步。
X无线芯片的未来前景
随着无线通信技术的不断进步和应用领域的不断扩展,X无线芯片的未来前景看好。以下是一些关键点:
- 5G技术的普及:随着5G技术的快速发展,X无线芯片将在5G通信中发挥关键作用。其高速的数据传输和稳定性将成为5G通信的基石。
- 物联网的快速发展:物联网作为未来发展的重点领域,需要大量的无线通信解决方案。X无线芯片将在物联网设备的连接和数据传输方面继续发挥重要作用。
- 人工智能与无线通信的结合:人工智能技术的兴起为无线通信带来了新的机遇。X无线芯片将与人工智能相结合,实现更智能的无线通信系统。
- 可穿戴设备的普及:随着人们对健康监测和智能生活的需求增加,可穿戴设备市场迅速发展。X无线芯片将成为实现可穿戴设备无线通信的核心技术。
综上所述,X无线芯片作为一种高性能、高效能的无线通信解决方案,拥有广阔的应用前景。在未来的发展中,它将继续发挥重要的作用,并推动着无线通信技术的进步。
九、芯片发射是什么?
1 芯片发射是指芯片内部发出的电磁辐射或者无线信号。2 芯片发射是由芯片内部的电流变化引起的,当电流通过芯片中的导线或晶体管时,会产生电磁辐射或者无线信号的发射。3 芯片发射的主要原因是芯片内部的电流变化会产生电磁场,这个电磁场会辐射出去,形成芯片的发射信号。芯片发射的频率和强度取决于芯片内部的电流变化情况。4 芯片发射在无线通信领域非常重要,因为无线通信需要通过发射信号来传输数据和信息。芯片发射的性能和质量对无线通信的稳定性和速度有着重要影响。5 芯片发射也需要注意控制,避免产生干扰或者泄露敏感信息。因此,在设计和制造芯片时,需要考虑到芯片发射的问题,并采取相应的措施来减少发射干扰或者保护敏感信息的安全。
十、怎样用无线电发射器发射信号距离超过20公里?
20公里不是问题,但要考虑环境,是平原还是山区,还有你的高度。
根据环境选择波段,无线电信号有写波段是支线传播,有些波段是通过大气层反射传播。
平原一般是UHF,山区VHF,还有HF 通过打气层反射传播。HF 对天线有要求,一般都是10米以上的长度。UHF 是 70厘米, VHF 一般是2米。
VHF与UHF哪个通联效果好
netkiller:VHF与UHF哪个效果好?对讲机频率与距离有关系吗?
答案是:有,但是有很多因素影响。
例如VHF 比 UHF 有传播优势,但是前提是你必须使用全波长天线。
你不能拿1/4 波长的VHF天线跟全波长UHF天线比较。
手持对讲机VHF天线都是1/4和1/8长度的天线,对比 UHF 手持对讲机所使用的 1/2波长天线,手持VHF 效果没有 UHF 好,UHF更有优势。
即使是车载电台配备的VHF天线也是 1/2波长的(1米长)没有达到2米的全波长,也没有UHF有优势,因为马路和地下停车场限高,车载UHF天线通常是1.4米左右(UHF标准长度70厘米)通过天线中间的线圈将天线做到2倍波长增加天线的增益。即增益是比全波长70厘米要高的,能发挥出120%的效率(120%我蒙的,总之比70厘米长的天线增益要高)。除非你在车上安装 2米长的VHF天线,否则不能100%发挥VHF的优势。当然也有 4米长VHF玻璃钢天线(双倍波长VHF天线)增益又提高到另一个水平。
插入科普,GP天线,俗称垂直地网天线,通过增加天线的长度,可以增加天线的增益。与八木天线增加单元数量做法一样,只是GP天线是增加高度。所以430MHz 的 UHF 可以做到 4米长,达到 10-12db 的增益。优势:相比八木GP天线没有指向性,更适合做中继天线。劣势:架设难度,防台风,防雷。每年深圳台友都会损失几根4米玻璃钢天线。
而海上没有限高的限制,船舶可以使用全波长2米高甚至4米的玻璃钢VHF天线,所以在海上 VHF的优势全部被发挥出来,远远强于 UHF。
早年我测试过VHF和UHF通联效果。差异还是很大的,当时我跟BG7NQF通联,记得他使用车台,我使用Yaesu FT-60R 相同距离.
UHF 信号表比 VHF 高,但是语音背景噪大。VHF 只要信号起表 1,2格,语言就很清晰。
我的分析是,UHF 穿透性好,但是穿透过程会损失语音细节,出现噪声。使用VHF通联绕射效果好,虽然信号到达后,信号表只有1到2格,绕射并不损失语音细节。
这就是当年为什么 FM 调频广播选择了这段频率。
除此之外,相同电压和电流的情况下,低频损耗相对小,功放电路发挥的更好。例如你翻看车台的说明书,会发现很多车台,VHF 能出50W功率,UHF只能出40或45W。
最后,天线是一寸长,一寸强。一寸短一寸软。长度决定一切。
早年还买过29.6MHz的车载天线(1.2米长),这种天线已经是 0db的增益了,随便拉根2.5米的导线都比他强。为什么还会有这种天线呢?这种天线是阻抗匹配的,驻波合格的。虽然增益低的离谱,但是可以放心发射,不会烧机。
数字电台与模拟电台谁传播的更远
netkiller:阳台天线怎么选择?作者:BG7NYT
清明节小长假,我和家人驱车前往广东道教圣地“罗浮山”游玩。
本次出行我携带两部电台,一台是Yaesu FT-2DR,另一台是Mototrbo XIR P8668 (数模两用机)。行车中Yaesu FT-2DR 一直链接到车尾的名古屋 770H 上,全程基本都能抄收 439.460(深圳模拟中继),由于我要驾驶汽车为了安全就没有试过发射。
以下省略500字......
到达我们的目的地终点蓬莱谷山庄,一下车便抄起对讲机先考察一下通联位置。
第一轮
车停的地方靠近房子770H车载天线也无法发射出去,下车FT-2DR换上原装天线 439.460 无法上台,再抄起 P8668 竟然可能正常通联 438.460 (深圳数字中继) 4W功率(MOTO高功率)。爬到水塔上数字电台 2W 功率通联无压力,稳定通联。模拟中继仍然上不了。
439.460 中继高度 700~800M 之间 438.460 数字中继高度 400M 左右
罗浮山到两个中继的直线距离差不错 100公里左右
考虑到两部机器的差异,功率也不同,于是将 P8668 切换到模拟频道 439.460 4W功率依然无法打开中级。
第一轮数字胜出,模拟偶尔可以超收但无法上台。
以下省略500字......
第二轮
下午登罗浮山,随着高度的增加模拟中继终于可以打开了,信号也随着高度增加从3~4,但始终没有达到59零噪音。到达缆车平台处天色已晚,不想再继续登顶,老婆孩子直接做缆车下山,我跟另一个朋友步行下山。
这一轮,数字零噪音,高度越高越稳定,而模拟远程信号想零噪音是不可能的。我认为还是数字胜出。
总结
下面是我的分析,不一定正确,因为我不是学通信,大家一起讨论。
P8668 单极化端天线够用
以前一直以为一寸长一寸强(一寸短一寸软 哈哈) 测试发现 FT-2DR 的原装天线没有比P8668 好到哪里去。
P8668 的原装10公分天线 与 FT-2DR 的原装天线差距微乎其微。
FT-2DR 换上 Nagoya NA-771(40CM 长) 手台天线才感觉到质变。
声音频率的问题
我觉得声音中的高频声音传播的更远,低频声音容易衰减,例如导游使用的扩声器,就是提高高音。
相比人声 MDC1200 的AFSK调制使用的是高频声音,即使传播中语音完全丢失,高频的AFSK信令仍然被保留了下来,导致对方听不到我的声音,但能看到我的摩托罗拉的信令解码无误。
另一个发现就是 APRS 能轻松解码,但是语音通信却听不清对方在讲什么。
我们使用模拟电台收听数字频率无论是C4FM 还是 DMR 它们的 4FSK 调制信号都是高频声音。
窄带更适合远程通信
模拟电台NFM采用 25K 带宽,业余电台对频率的分配无法像广播电台那样严谨,WFM 100K带宽,各地广播必须按照这100K作为步进划分频率。虽然400Mhz UHF的带宽是25K,但几乎没有人遵循这个步进标准来划分频率。例如 430.000,430.025, 430.050, 430.075 ....... 以此类推。我们常常看到 430.055, 430.070,这样的频率就会干扰 430.050 跟 430.075。
例如 438.500Mhz 这个频率,它的上一个频点应该是 438.475Mhz ,下一个频点应该是 438.525Mhz。那么在 438.475 ~ 438.500 之间 或者 438.500 ~ 438.525 之间有任何发射都会影响到中心频点的。
你可以做一个实验,两部电台,A在 438.500 上发射,B电台可以在 438.510 , 438.490 等频率上收到信号。
从罗浮山到深圳,中间100公里的距离,传播过程中容易受到干扰,干扰少的信号才能到达目的地。这也是为什么短波不使用 FM 的原因。
回到数字电台,DMR 使用 4FSK 12.5K 带宽,临近频道的干扰机率就比模拟少。例如同样是使用 438.500 中心频点用来发射数字信号,那么438.500的上一个频点应该是 438.487.5 下一个频点应该是 438.512.5,至少 438.475 和 438.525 等频点不会干扰到数字频率。
Yaesu 的 C4FM 使用DN模式的时候只有6.25K带宽,应该是 4FSK 变为 2FSK。如果中心频点是 438.500, 那么上一个相邻频率就是 438.493.75Mhz 下一个相邻频点是 438.506.25Mhz 被干扰的机会大大降低。DMR 直频的时候只能使用第一个时隙通话应该也是6.25带宽。
远程模拟信号会丢失语音
前面已经谈到了模拟的带宽和干扰问题,除此之外还有信号的衰减。模拟调频 FM 25K 带宽携带声音正弦波,传播中任何干扰或衰减都会产生噪音,可能达到目的地已经无法再还原出语音了。
例如A发射出去的信号到达B的时候,B的静噪已经开启,但喇叭已经没有语音了。如果是两个摩托罗拉的机器会出现B听不到语音,但是MDC1200信令能成功解码。
对方回复我:"可以看到我的信令,无法听到语音,让我加大功率,改变位置"。
很多Ham说模拟的优势就是极弱信号的时候,人的耳朵还可以分辨出对方讲的是什么。我的测试结果告诉我,对方一直看到我在压PPT,看到我的信令,一句语音都无法超收,全是噼里啪啦炒豆子的声音。
而数字信号FSK 方波坑干扰能力更强,数字电台在语音无法抄收的情况发送短信仍然能保持。
设备的因素
这次测试的两个中继,439.460模拟中继比较老旧。估计是10年前的产品,虽然高度占优势。但是设备老化,灵敏度低。
而 438.460 DMR 中继是摩托罗拉的最新产品,工作在最佳工况状态。
总结
如今的无线电频率是夹缝中求生存,尤其是商用频段,已经饱和,很多地方ZF开始回收业余段,即使没有回收,管理滞后无线频率使用混乱,常常业余段被侵占,ZF大力推广数字电台,数字电台能使无线电频率容量翻倍,我仍然不乐观。
我认为首先机器出厂,就应该像十年前一样,分为 U高,U低,通过跳线,或者物理切换,不允许用户随意设置频率。这样才能防止用户乱设频率。
数字与模拟传播的距离是一样的,关键看最终到达终点的过程中是否遇到其他不可控因素,例如干扰。
联系作者
CQCQCQ DE BG7NYT Standing BY
MMDVM:
- YSF80337 - CN China 1 - W24166/TG46001
- BM_China_46001 - DMR Radio ID 4600441