一、刻蚀原理?
把未被抗蚀剂掩蔽的薄膜层除去,从而在薄膜上得到与抗蚀剂膜上完全相同图形的工艺。
在集成电路制造过程中,经过掩模套准、曝光和显影,在抗蚀剂膜上复印出所需的图形,或者用电子束直接描绘在抗蚀剂膜上产生图形,然后把此图形精确地转移到抗蚀剂下面的介质薄膜(如氧化硅、氮化硅、多晶硅)或金属薄膜(如铝及其合金)上去,制造出所需的薄层图案。
刻蚀就是用化学的、物理的或同时使用化学和物理的方法,有选择地把没有被抗蚀剂掩蔽的那一部分薄膜层除去,从而在薄膜上得到和抗蚀剂膜上完全一致的图形。 刻蚀技术主要分为干法刻蚀与湿法刻蚀。
干法刻蚀主要利用反应气体与等离子体进行刻蚀;湿法刻蚀主要利用化学试剂与被刻蚀材料发生化学反应进行刻蚀。
二、芯片如何分层刻蚀?
芯片一般通过涂膜、物理化学气象沉积等方法分层刻蚀。
晶圆厂商使用4种最基本的工艺方法,通过大量的工艺顺序和工艺变化制造出特定的芯片。这些最基本的工艺方法是增层、光刻、掺杂和热处理。比如生长二氧化硅膜和淀积不同种材料的薄膜。通用的淀积技术是物理气相淀积(PVD),化学气相淀积(CVD)、蒸发和溅射,由此形成不同分层。
三、铜箔刻蚀原理?
铜箔的蚀刻原理:
蚀刻时的主要化学反应三氯化铁蚀刻液对铜箔的蚀刻是一个氧化-还原过程。铜表面Fe3+使铜氧化成氯化亚铜。同时Fe3+被还原成Fe2+ FeCl3+CuFeCl2+CuCl 可以和FeCl3进一步发生反应天生氯化铜。CuCl具有还原性。
FeCl3+CuClFeCl2+CuCl2 与铜发生氧化反应:Cu2+具有氧化性。 CuCl2+Cu2CuCl FeCl3蚀刻液对Cu蚀刻时靠Fe3+和Cu2+共同完成的其中Fe3+蚀刻速率快,所以。蚀刻质量好;而Cu2+蚀刻速率慢,蚀刻质量差。新配制的蚀刻液中只有Fe3+所以蚀刻速率较快。但是跟着蚀刻反应的进行,Fe3+不时消耗,而Cu2+不时增加。当Fe3+消耗掉35%时,Cu2+已增加到相称大的浓度,这时Fe3+和Cu2+对Cu蚀刻量几乎相等;当Fe3+消耗掉50%时,Cu2+蚀刻作用由主要地位而跃居主要地位,此时蚀刻速率慢,即应考虑蚀刻液的更新。
四、koh刻蚀原理?
KOH和MEGO的反应从400 ºC以上即开始进行:在较低温度下(450 ºC-500 ºC),氧化还原开始刻蚀石墨烯片层,在石墨烯片层上产生纳米尺寸的孔洞或者缺陷,而此时MEGO的层状结构大部分仍得以保留;当活化温度进一步升高(>550 ºC),大量反应产生的孔洞或碳碎片相互连接和组装,逐渐过渡形成三维孔道结构。到活化的优化条件即800 ºC左右,片层状石墨烯已经被完全重构成为三维多孔碳材料。
五、刻蚀工作原理?
反应物质量输运(Mass transport)到要被刻蚀的表面 在反应物和要被刻蚀的膜表面之间的反应 反应产物从表面向外扩散的过程
六、刻蚀的原理?
蚀刻的原理
通常所指蚀刻也称腐蚀或光化学蚀刻(photochemicaletching),指通过曝光制版、显影后,将要蚀刻区域的保护膜去除,在蚀刻时接触化学溶液,达到溶解腐蚀的作用,形成凹凸或者镂空成型的效果。最早可用来制造铜版、锌版等印刷凹凸版,也广泛地被使用于减轻重量(WeightReduction)仪器镶板,铭牌及传统加工法难以加工之薄形工件等的加工;经过不断改良和工艺设备发展,亦可以用于航空、机械、化学工业中电子薄片零件精密蚀刻产品的加工,特别在半导体制程上,蚀刻更是不可或缺的技术。
七、芯片刻蚀机概念?
芯片蚀刻机的主要作用就是将光刻机光刻好的芯片电路图进行逐一雕刻,并且每一步微观细节都不能够出错,尤其是要在指甲盖大小的芯片能上,集成上百个晶体管,可见其芯片蚀刻机的雕刻技术难度之高。
蚀刻机可以分为化学蚀刻机及电解蚀刻机两类。在化学蚀刻中是使用化学溶液,经由化学反应以达到蚀刻的目的,化学蚀刻机是将材料用化学反应或物理撞击作用而移除的技术。
八、icp刻蚀机原理?
ICP刻蚀机是一种常用于集成电路制造中的刻蚀设备,其原理是利用高频感应等离子体的化学反应和物理作用来刻蚀硅片表面。
具体来说,ICP刻蚀机内部有一个封闭的反应室,室内填充了一定的刻蚀气体,如氢气、氟气等。在室内通入高频电源,形成高频电磁场。当气体分子受到高频电场的作用,产生电离和激发,形成等离子体。等离子体中的电子和离子会在高能碰撞中释放出较大的能量,从而引发刻蚀化学反应。同时,等离子体中的离子也会受到电场的作用,向硅片表面加速运动,并与硅原子发生碰撞,从而将硅原子脱离硅片表面,实现刻蚀的过程。
ICP刻蚀机的优点是刻蚀速度快、刻蚀深度均匀、刻蚀质量高、氧化层薄等,广泛应用于半导体、光电子、微电子等领域的制造和研究。
九、铝湿法刻蚀原理
在半导体制造中有两种基本的刻蚀工艺:干法刻蚀和湿法腐蚀。干法刻蚀是把硅片表面曝露于气态中产生的等离子体,等离子体通过光刻胶中开出的窗口,与硅片发生物理或化学反应(或这两种反应),从而去掉曝露的表面材料。干法刻蚀是亚微米尺寸下刻蚀器件的最重要方法。而在湿法腐蚀中,液体化学试剂(如酸、碱和溶剂等)以化学方式去除硅片表面的材料。湿法腐蚀一般只是用在尺寸较大的情况下(大于3微米)。湿法腐蚀仍然用来腐蚀硅片上某些层或用来去除干法刻蚀后的残留物。
基本工艺要求 理想的刻蚀工艺必须具有以下特点:①各向异性刻蚀,即只有垂直刻蚀,没有横向钻蚀。这样才能保证精确地在被刻蚀的薄膜上复制出与抗蚀剂上完全一致的几何图形;②良好的刻蚀选择性,即对作为掩模的抗蚀剂和处于其下的另一层薄膜或材料的刻蚀速率都比被刻蚀薄膜的刻蚀速率小得多,以保证刻蚀过程中抗蚀剂掩蔽的有效性,不致发生因为过刻蚀而损坏薄膜下面的其他材料;③加工批量大,控制容易,成本低,对环境污染少,适用于工业生产。
十、化学刻蚀液原理?
(1)紫外光照射暴露于刻蚀液的氮化镓将激发氮化镓半导体内产生电子-空穴对;
(2)电子在金属层表面(作为光电化学的阴极)被刻蚀液中的氧化剂消耗,与此同时,空穴在氮化镓/刻蚀液界面聚集并氧化氮化镓,从而生成三氧化二镓;
(3)两性的三氧化二镓可与氢离子或氢氧根离子反应被溶解,使得光电化学刻蚀可持续进行。